Join us to discuss women’s elective choices in Computing on Monday 4th March at 2pm GMT

How can we increase participation of women in computing? How can we recruit and retain more women to study computing? Curricula are an obvious place to start. Understanding student motivations for their learning choices can help educators develop more effective programs of study. Join us to discuss a paper modeling women’s elective choices in computing by Steven Bradley, Miranda C. Parker, Rukiye Altin, Lecia Barker, Sara Hooshangi, Thom Kunkeler, Ruth G. Lennon, Fiona McNeill, Julià Minguillón, Jack Parkinson, Svetlana Peltsverger and Naaz Sibia from the Proceedings of the 2023 Working Group Reports on Innovation and Technology in Computer Science Education (ITiCSE). From the abstract:

Evidence-based strategies suggest ways to reduce the gender gap in computing. For example, elective classes are valuable in enabling students to choose in which directions to expand their computing knowledge in areas aligned with their interests. The availability of electives of interest may also make computing programs of study more meaningful to women. However, research on which elective computing topics are more appealing to women is often class or institution specific. In this study, we investigate differences in enrollment within undergraduate-level elective classes in computing to study differences between women and men. The study combined data from nine institutions from both Western Europe and North America and included 272 different classes with 49,710 student enrollments. These classes were encoded using ACM curriculum guidelines and combined with the enrollment data to build a hierarchical statistical model of factors affecting student choice. Our model shows which elective topics are less popular with all students (including fundamentals of programming languages and parallel and distributed computing), and which elective topics are more popular with women students (including mathematical and statistical foundations, human computer interaction and society, ethics, and professionalism). Understanding which classes appeal to different students can help departments gain insight of student choices and develop programs accordingly. Additionally, these choices can also help departments explore whether some students are less likely to choose certain classes than others, indicating potential barriers to participation in computing.

We’ll be joined by some of the co-authors of the paper who will give us a five minute lightning talk summary to kick-off our discussion. As usual we’ll be meeting on zoom, all welcome, joining details at


  1. Steven Bradley, Miranda C. Parker, Rukiye Altin, Lecia Barker, Sara Hooshangi, Thom Kunkeler, Ruth G. Lennon, Fiona McNeill, Julià Minguillón, Jack Parkinson, Svetlana Peltsverger, Naaz Sibia (2023) ITiCSE-WGR ’23: Proceedings of the 2023 Working Group Reports on Innovation and Technology in Computer Science Education, Pages 196–226, DOI:10.1145/3623762.3633497

CC licensed image via

Join us to discuss widening participation for Women in Computing on Monday 7th February at 2pm GMT

Public domain image of Margaret Hamilton standing next to a print out of software that she and her MIT team produced for the Apollo Guidance Computer in 1969 via Wikimedia Commons

Computing is too important to be left to men, but where have all the women gone? While women continue to play a key role in computing they are currently under-represented in Computer Science. How can we change this and what evidence is there for practices that get more women into computing? Join us to discuss the subject via a paper by Briana Morrison et al [1] on Monday 7th February at 2pm GMT. Here is the abstract of the paper:

Computing has, for many years, been one of the least demographically diverse STEM fields, particularly in terms of women’s participation. The last decade has seen a proliferation of research exploring new teaching techniques and their effect on the retention of students who have historically been excluded from computing. This research suggests interventions and practices that can affect the inclusiveness of the computer science classroom and potentially improve learning outcomes for all students. But research needs to be translated into practice, and practices need to be taken up in real classrooms. The current paper reports on the results of a focused systematic “state-of-the-art” review of recent empirical studies of teaching practices that have some explicit test of the impact on women in computing. Using the NCWIT Engagement Practices Framework as a means of organisation, we summarise this research, outline the practices that have the most empirical support, and suggest where additional research is needed.

All welcome, whatever your gender identity, gender expression or biological sex. As usual we’ll be meeting on zoom, details are in the slack channel


  1. Briana B. Morrison, Beth A. Quinn, Steven Bradley, Kevin Buffardi, Brian Harrington, Helen H. Hu, Maria Kallia, Fiona McNeill, Oluwakemi Ola, Miranda Parker, Jennifer Rosato and Jane Waite (2021) Evidence for Teaching Practices that Broaden Participation for Women in Computing in Proceedings of the 2021 Working Group Reports on Innovation and Technology in Computer Science Education DOI:10.1145/3502870.3506568

Join us to re-examine inequalities in Computer Science participation on Monday 4th October at 2pm BST

Loaded scales image by Carole J. Lee on Wikimedia Commons

It’s no secret that both Computer Science and engineering have inequalities in their participation. Join us to re-examine and discuss these inequalities via a paper by Maria Kallia and Quintin Cutts [1] on Monday 4th October at 2pm BST. This won a best paper award at ICER 2021. From the abstract:

Concerns about participation in computer science at all levels of education continue to rise, despite the substantial efforts of research, policy, and world-wide education initiatives. In this paper, which is guided by a systematic literature review, we investigate the issue of inequalities in participation by bringing a theoretical lens from the sociology of education, and particularly, Bourdieu’s theory of social reproduction. By paying particular attention to Bourdieu’s theorising of capital, habitus, and field, we first establish an alignment between Bourdieu’s theory and what is known about inequalities in computer science (CS) participation; we demonstrate how the factors affecting participation constitute capital forms that individuals possess to leverage within the computer science field, while students’ views and dispositions towards computer science and scientists are rooted in their habitus which influences their successful assimilation in computer science fields. Subsequently, by projecting the issue of inequalities in CS participation to Bourdieu’s sociological theorisations, we explain that because most interventions do not consider the issue holistically and not in formal education settings, the reported benefits do not continue in the long-term which reproduces the problem. Most interventions have indeed contributed significantly to the issue, but they have either focused on developing some aspects of computer science capital or on designing activities that, although inclusive in terms of their content and context, attempt to re-construct students’ habitus to “fit” in the already “pathologized” computer science fields. Therefore, we argue that to contribute significantly to the equity and participation issue in computer science, research and interventions should focus on restructuring the computer science field and the rules of participation, as well as on building holistically students’ computer science capital and habitus within computer science fields.

A presentation video by Maria of the paper from ICER 2021

All welcome. As usual, we’ll be meeting on zoom. Thanks to Steven Bradley for suggesting this months paper.


  1. Maria Kallia and Quintin Cutts (2021) Re-Examining Inequalities in Computer Science Participation from a Bourdieusian Sociological Perspective. In Proceedings of the 17th ACM Conference on International Computing Education Research (ICER) 2021 Pages 379–392, 10.1145/3446871.3469763