The textbook has long been a mainstay of education. Although online textbooks can give students easy (and sometimes free) access to increasingly interactive resources, authors have a bewildering array of tools and publishing models to select from. Software such as asciidoctor.org, bookdown.org, leanpub.com, pretextbook.org, quarto.org, rephactor.com, runestone.academy, zybooks.com, and many others allow instructors to publish course material freed from the constraints of printed paper, monolithic Learning Management Systems (LMSs) and Monolithic Massive Open Online Courses (MOOCs). Join us on Monday 12th of June at 2pm BST (UTC+1) to discuss a paper describing one example: Dive Into Systems an undergraduate textbook on computer systems. We’ll be joined the co-authors of a paper [1] and corresponding textbook by Suzanne Matthews, Tia Newhall and Kevin C. Webb from Swarthmore College, Pennsylvania and the United States Military Academy at westpoint.edu, New York. 🇺🇸 From the abstract of their paper:
This paper presents our experiences, motivations, and goals for developing Dive into Systems, a new, free, online textbook that introduces computer systems, computer organisation, and parallel computing. Our book’s topic coverage is designed to give readers a gentle and broad introduction to these important topics. It teaches the fundamentals of computer systems and architecture, introduces skills for writing efficient programs, and provides necessary background to prepare students for advanced study in computer systems topics. Our book assumes only a CS1 background of the reader and is designed to be useful to a range of courses as a primary textbook for courses that introduce computer systems topics or as an auxiliary textbook to provide systems background in other courses. Results of an evaluation from students and faculty at 18 institutions who used a beta release of our book show overwhelmingly strong support for its coverage of computer systems topics, its readability, and its availability. Chapters are reviewed and edited by external volunteers from the CS education community. Their feedback, as well as that of student and faculty users, is continuously incorporated into its online content at diveintosystems.org/book
We’ll also be discussing options for adding interactivity to textbooks, see diveintosystems.org/sigcse23. So join us to find out more about what the future of textbooks might look like using Dive Into Systems as an exemplar. All welcome, as usual, we’ll be meeting on zoom, details at sigcse.cs.manchester.ac.uk/join-us
Suzanne J. Matthews, Tia Newhall and Kevin C. Webb (2021) Dive into Systems: A Free, Online Textbook for Introducing Computer Systems SIGCSE ’21: Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, Pages 1110–1116 DOI: 10.1145/3408877.3432514
As Universities transition to online teaching during the global coronavirus pandemic, there’s increasing interest in the use of pre-recorded videos to replace traditional lectures in higher education. Join us to discuss how video production affects student engagement, based on a paper published by Philip Guo at the University of California, San Deigo (UCSD) from the Learning at Scale conference on How video production affects student engagement: an empirical study of MOOC videos. (MOOC stands for Massive Open Online Course). [1] Here is the abstract:
Videos are a widely-used kind of resource for online learning. This paper presents an empirical study of how video production decisions affect student engagement in online educational videos. To our knowledge, ours is the largest-scale study of video engagement to date, using data from 6.9 million video watching sessions across four courses on the edX MOOC platform. We measure engagement by how long students are watching each video, and whether they attempt to answer post-video assessment problems.
Our main findings are that shorter videos are much more engaging, that informal talking-head videos are more engaging, that Khan-style tablet drawings are more engaging, that even high-quality pre-recorded classroom lectures might not make for engaging online videos, and that students engage differently with lecture and tutorial videos.
Based upon these quantitative findings and qualitative insights from interviews with edX staff, we developed a set of recommendations to help instructors and video producers take better advantage of the online video format. Finally, to enable researchers to reproduce and build upon our findings, we have made our anonymized video watching data set and analysis scripts public. To our knowledge, ours is one of the first public data sets on MOOC resource usage.
Details of the zoom meeting will be posted on our slack workspace at uk-acm-sigsce.slack.com. If you don’t have access to the workspace, send me (Duncan Hull) an email to request an invite to join the workspace. The paper refers to several styles of video production, some examples below.
Join us for our next journal club meeting on Monday 6th July at 3pm, the papers we’ll be discussing below come from the #paper-suggestions channel of our slack workspace at uk-acm-sigsce.slack.com.
Show me the pedagogy!
The first paper is a short chapter by Katrina Falkner and Judy Sheard which gives an overview of pedagogic approaches including active learning, collaborative learning, cooperative learning, contributing student pedagogy (CSP), blended learning and MOOCs. [1] This was published last year as chapter 15 of the Cambridge Handbook on Computing Education Research edited by Sally Fincher and Anthony V. Robins. A lot of blended learning resources focus on technology, this chapter talks about where blended learning fits with a range of different pedagogic approaches.
Implementing blended learning
The second paper (suggested by Jane Waite) is Design and implementation factors in blended synchronous learning environments [2], here’s a summary from the abstract:
Increasingly, universities are using technology to provide students with more flexible modes of participation. This article presents a cross-case analysis of blended synchronous learning environments—contexts where remote students participated in face-to-face classes through the use of rich-media synchronous technologies such as video conferencing, web conferencing, and virtual worlds. The study examined how design and implementation factors influenced student learning activity and perceived learning outcomes, drawing on a synthesis of student, teacher, and researcher observations collected before, during, and after blended synchronous learning lessons. Key findings include the importance of designing for active learning, the need to select and utilise technologies appropriately to meet communicative requirements, varying degrees of co-presence depending on technological and human factors, and heightened cognitive load. Pedagogical, technological, and logistical implications are presented in the form of a Blended Synchronous Learning Design Framework that is grounded in the results of the study.
We look forward to seeing you there, zoom details are on the slack channel, email me if you’d like to request an invitation to the slack channel. Likewise, if you don’t have access to the papers let me know.
Short notes from the discussion
Some of the questions discussed on the day:
Inclusion raises a number of questions in terms of room management, gender balance – was this a consideration?
What effect do you think the absence of anyone F2F would have on the case studies and/or your outcomes?
How scalable is this approach? Can it be used with classes of 200 or 300 students?
Constructive alignment plays an important role in getting this kind of blended learning to work, see the work of John Biggs e.g. Teaching for Quality Learning at University book
Further reading from co-authors
Jaqueline Kenney, one of the co-authors of the paper we discussed joined us for the session (thanks again Jacqueline). Matt Bower also emailed some suggestions of work that follows on
See related work Collaborative learning across physical and virtual worlds: Factors supporting and constraining learners in a blended reality environment DOI:10.1111/bjet.12435 and blendsync.org
Bower, M. (2006). Virtual classroom pedagogy. Paper presented at the Proceedings of the 37th SIGCSE technical symposium on Computer science education, Houston, Texas, USA. DOI:10.1145/1121341.1121390
Bower, M. (2006). A learning system engineering approach to developing online courses. Paper presented at the Proceedings of the 8th Australasian Conference on Computing Education – Volume 52, Hobart, Australia.
Bower, M. (2007). Groupwork activities in synchronous online classroom spaces. Paper presented at the Proceedings of the 38th SIGCSE technical symposium on Computer science education, Covington, Kentucky, USA. DOI:10.1145/1227310.1227345
Bower, M. (2007). Independent, synchronous and asynchronous an analysis of approaches to online concept formation. Paper presented at the Proceedings of the 12th annual SIGCSE conference on Innovation and technology in computer science education, Dundee, Scotland. DOI:10.1145/1268784.1268827
Bower, M. (2008). The “instructed-teacher”: a computer science online learning pedagogical pattern. Paper presented at the Proceedings of the 13th annual conference on Innovation and technology in computer science education, Madrid, Spain. DOI:10.1145/1384271.1384323
Bower, M., & McIver, A. (2011). Continual and explicit comparison to promote proactive facilitation during second computer language learning. Paper presented at the Proceedings of the 16th annual joint conference on Innovation and technology in computer science education, Darmstadt, Germany. DOI:10.1145/1999747.1999809
Bower, M., & Richards, D. (2005). The impact of virtual classroom laboratories in CSE. Paper presented at the Proceedings of the 36th SIGCSE technical symposium on Computer science education, St. Louis, Missouri, USA. DOI:10.1145/1047344.1047447As well, this Computers & Education paper specifically relates to a study of teaching computing online:
Bower, M., & Hedberg, J. G. (2010). A quantitative multimodal discourse analysis of teaching and learning in a web-conferencing environment–the efficacy of student-centred learning designs. Computers & education, 54(2), 462-478.
References
Falkner, Katrina; Sheard, Judy (2019). “Pedagogic Approaches”: 445–480. doi:10.1017/9781108654555.016. Chapter 15 of the The Cambridge Handbook of Computing Education Research
Bower, Matt; Dalgarno, Barney; Kennedy, Gregor E.; Lee, Mark J.W.; Kenney, Jacqueline (2015). “Design and implementation factors in blended synchronous learning environments: Outcomes from a cross-case analysis”. Computers & Education. 86: 1–17. doi:10.1016/j.compedu.2015.03.006. ISSN0360-1315.