Join us to discuss the role of storytelling and drama in the lecture theatre on Monday 6th November at 2pm UTC

Theatre masks image from flaticon.com

All the world’s a stage, and all the men and women merely players; They have their exits and their entrances. And one teacher in their time plays many parts.

As students watch academic actors enter and exit their lecture theatres on University campuses around the world, what role can drama play in their teaching and learning? How can theatre and storytelling facilitate students understanding of whatever is they are supposed to be learning?

Are we walking shadows and poor players that strut and fret our hour upon the stage, and then are heard no more? Do we tell tales like an idiot, full of sound and fury but signifying nothing? In short, how much should teachers embrace theatricality, both amateur and professional, on their respective stages? Can drama and storytelling actually improve students learning and if so, how? 🎭

Join us on Monday 6th November at 2pm UTC for our monthly ACM SIGCSE journal club meetup on zoom to discuss a paper on this topic by David Malan. [1] From the abstract

In Fall 2020, Harvard University transitioned entirely from on-campus instruction to Zoom online. But a silver lining of that time was unprecedented availability of space on campus, including the university’s own repertory theater. In healthier times, that theater would be brimming with talented artisans and weekly performances, without any computer science in sight. But with that theater’s artisans otherwise idled during COVID-19, our introductory course, CS50, had an unusual opportunity to collaborate with the same. Albeit subject to rigorous protocols, including face masks and face shields for all but the course’s instructor, along with significant social distancing, that moment in time allowed us an opportunity to experiment with lights, cameras, and action on an actual stage, bringing computer science to life in ways not traditionally possible in the course’s own classroom. Equipped with an actual prop shop in back, the team of artisans was able to actualize ideas that might otherwise only exist in slides and code. And students’ experience proved the better for it, with a supermajority of students attesting at term’s end to the efficacy of almost all of the semester’s demonstrations. We present in this work the design and implementation of the course’s theatricality along with the motivation therefor and results thereof. And we discuss how we have adapted, and others can adapt, these same moments more modestly in healthier times to more traditional classrooms, large and small.

This paper was presented at the SIGCSE 2023 Technical Symposium in Toronto, a video presentation of the paper is also available below. All welcome, as usual, we’ll be meeting on zoom, details at sigcse.cs.manchester.ac.uk/join-us

References

  1. Malan, David J. (2023). Computer Science with Theatricality: Creating Memorable Moments in CS50 with the American Repertory Theater during COVID-19. SIGCSE 2023: Proceedings of the 54th ACM Technical Symposium on Computer Science Education, New York, NY, USA. DOI:10.1145/3545945.3569859 non-paywalled version at cs.harvard.edu/malan/publications/V1fp479-malan.pdf

Join us to discuss when study turns digital on Monday 2nd August at 2pm BST

Public domain image of Coronavirus by Alissa Eckert and Dan Higgins at CDC.gov on Wikimedia commons w.wiki/ycs


The pandemic has accelerated changes to the way we teach and learn. Join us to discuss the Covid-19 shutdown: when studying turns digital, students want more structure: a paper by Vegard Gjerde, Robert Gray, Bodil Holst and Stein Dankert Kolstø on the effects of the pandemic on Physics Education at a Norwegian University. [1]

In March 2020, universities in Norway and many other countries shut down due to the Covid-19 pandemic. The students lost access to classrooms, libraries, study halls, and laboratories. Studying turned digital. Because it is unclear when this pandemic will cease to affect students and because we cannot know whether or when a new pandemic occurs, we need to find ways to improve digital study-life for students. An important step in this direction is to understand the students’ experiences and perspectives regarding how the digitalization affected their study-life both in structured learning arenas and their self-study. Therefore, we interviewed 12 students in an introductory mechanics course at a Norwegian university in June of 2020. Through a thematic analysis, we identified four broad categories in the students’ different experiences and reflections, namely that digitalization: (a) provides benefits, e.g. the flexibility inherent in online video lectures; (b) incurs learning costs, e.g. students reducing their study effort; (c) incurs social costs, e.g. missing being around other students; and (d) increases the need for structure, e.g. wanting to be arranged in digital groups to solve mandatory tasks. We also found that the 2019 students on average scored significantly better on the final exam than the 2020 students, d = 0.31, but we discuss why this result should be interpreted with caution. We provide suggestions for how to adapt courses to make students’ digital studying more socially stimulating and effective. Furthermore, this study is a contribution to the historical documentation of the Covid-19 pandemic.

All welcome, as usual, we’ll be meeting on Zoom see sigcse.cs.manchester.ac.uk/join-us for details. Thanks to Sarah Clinch for suggesting the paper.

References

  1. Gjerde, Vegard; Gray, Robert; Holst, Bodil; Kolstø, Stein Dankert (2021). “The Covid-19 shutdown: when studying turns digital, students want more structure”. Physics Education56 (5): 055004. doi:10.1088/1361-6552/ac031e

Join us to discuss how video production affects student engagement Monday 3rd August at 11am

As Universities transition to online teaching during the global coronavirus pandemic, there’s increasing interest in the use of pre-recorded videos to replace traditional lectures in higher education. Join us to discuss how video production affects student engagement, based on a paper published by Philip Guo at the University of California, San Deigo (UCSD) from the Learning at Scale conference on How video production affects student engagement: an empirical study of MOOC videos. (MOOC stands for Massive Open Online Course). [1] Here is the abstract:

Videos are a widely-used kind of resource for online learning. This paper presents an empirical study of how video production decisions affect student engagement in online educational videos. To our knowledge, ours is the largest-scale study of video engagement to date, using data from 6.9 million video watching sessions across four courses on the edX MOOC platform. We measure engagement by how long students are watching each video, and whether they attempt to answer post-video assessment problems.

Our main findings are that shorter videos are much more engaging, that informal talking-head videos are more engaging, that Khan-style tablet drawings are more engaging, that even high-quality pre-recorded classroom lectures might not make for engaging online videos, and that students engage differently with lecture and tutorial videos.

Based upon these quantitative findings and qualitative insights from interviews with edX staff, we developed a set of recommendations to help instructors and video producers take better advantage of the online video format. Finally, to enable researchers to reproduce and build upon our findings, we have made our anonymized video watching data set and analysis scripts public. To our knowledge, ours is one of the first public data sets on MOOC resource usage.

Details of the zoom meeting will be posted on our slack workspace at uk-acm-sigsce.slack.com. If you don’t have access to the workspace, send me (Duncan Hull) an email to request an invite to join the workspace. The paper refers to several styles of video production, some examples below.

Khan style tablet drawings

The paper refers to Khan style videos, this is an example, taken from Khan Academy course on algorithms, khanacademy.org/computing/computer-science/algorithms

What is an algorithm? Video introduction to Khan Academy algorithms course by Thomas Cormen and Devin Balkcom

Talking Heads

Some examples of talking head videos:

How to frame a talking head with Tomás De Matteis

There’s more than one way to do talking head videos, see Moving to Blended Learning, Part 3: Types of Video at www.elearning.fse.manchester.ac.uk/fseta/moving-to-blended-learning-part-3-types-of-video/

Making video-friendly slides

Steve Pettifer explains how to make video-friendly slides


Lose the words! Your PowerPoint / Keynote presentation should not be a script or a handout

References

  1. Guo, Philip J.; Kim, Juho; Rubin, Rob (2014). “How video production affects student engagement: An Empirical Study of MOOC Videos “. Proceedings of the first ACM conference on Learning @ scale conference: 41–50. doi:10.1145/2556325.2566239. see also altmetric.com/details/2188041 for online attention score

Join us to discuss blended learning & pedagogy in Computer Science on Monday 6th July at 3pm

What is innovative pedagogy? CC-BY licensed picture by Giulia Forsythe

Join us for our next journal club meeting on Monday 6th July at 3pm, the papers we’ll be discussing below come from the #paper-suggestions channel of our slack workspace at uk-acm-sigsce.slack.com.

Show me the pedagogy!

The first paper is a short chapter by Katrina Falkner and Judy Sheard which gives an overview of pedagogic approaches including active learning, collaborative learning, cooperative learning, contributing student pedagogy (CSP), blended learning and MOOCs. [1] This was published last year as chapter 15 of the Cambridge Handbook on Computing Education Research edited by Sally Fincher and Anthony V. Robins. A lot of blended learning resources focus on technology, this chapter talks about where blended learning fits with a range of different pedagogic approaches.

A video summary of all sixteen chapters of the Cambridge Handbook of Computing Education Research, including chapter 15 which we’ll be discussing

Implementing blended learning

The second paper (suggested by Jane Waite) is Design and implementation factors in blended synchronous learning environments [2], here’s a summary from the abstract:

Increasingly, universities are using technology to provide students with more flexible modes of participation. This article presents a cross-case analysis of blended synchronous learning environments—contexts where remote students participated in face-to-face classes through the use of rich-media synchronous technologies such as video conferencing, web conferencing, and virtual worlds. The study examined how design and implementation factors influenced student learning activity and perceived learning outcomes, drawing on a synthesis of student, teacher, and researcher observations collected before, during, and after blended synchronous learning lessons. Key findings include the importance of designing for active learning, the need to select and utilise technologies appropriately to meet communicative requirements, varying degrees of co-presence depending on technological and human factors, and heightened cognitive load. Pedagogical, technological, and logistical implications are presented in the form of a Blended Synchronous Learning Design Framework that is grounded in the results of the study.

We look forward to seeing you there, zoom details are on the slack channel, email me if you’d like to request an invitation to the slack channel. Likewise, if you don’t have access to the papers let me know.

Short notes from the discussion

Some of the questions discussed on the day:

  • Inclusion raises a number of questions in terms of room management, gender balance – was this a consideration?
  • What effect do you think the absence of anyone F2F would have on the case studies and/or your outcomes?
  • How scalable is this approach? Can it be used with classes of 200 or 300 students?
  • Constructive alignment plays an important role in getting this kind of blended learning to work, see the work of John Biggs e.g. Teaching for Quality Learning at University book

Further reading from co-authors

Jaqueline Kenney, one of the co-authors of the paper we discussed joined us for the session (thanks again Jacqueline). Matt Bower also emailed some suggestions of work that follows on

  • See related work Collaborative learning across physical and virtual worlds: Factors supporting and constraining learners in a blended reality environment DOI:10.1111/bjet.12435 and blendsync.org
  • Bower, M. (2006). Virtual classroom pedagogy. Paper presented at the Proceedings of the 37th SIGCSE technical symposium on Computer science education, Houston, Texas, USA. DOI:10.1145/1121341.1121390
  • Bower, M. (2006). A learning system engineering approach to developing online courses. Paper presented at the Proceedings of the 8th Australasian Conference on Computing Education – Volume 52, Hobart, Australia. 
  • Bower, M. (2007). Groupwork activities in synchronous online classroom spaces. Paper presented at the Proceedings of the 38th SIGCSE technical symposium on Computer science education, Covington, Kentucky, USA. DOI:10.1145/1227310.1227345
  • Bower, M. (2007). Independent, synchronous and asynchronous an analysis of approaches to online concept formation. Paper presented at the Proceedings of the 12th annual SIGCSE conference on Innovation and technology in computer science education, Dundee, Scotland. DOI:10.1145/1268784.1268827
  • Bower, M. (2008). The “instructed-teacher”: a computer science online learning pedagogical pattern. Paper presented at the Proceedings of the 13th annual conference on Innovation and technology in computer science education, Madrid, Spain. DOI:10.1145/1384271.1384323
  • Bower, M., & McIver, A. (2011). Continual and explicit comparison to promote proactive facilitation during second computer language learning. Paper presented at the Proceedings of the 16th annual joint conference on Innovation and technology in computer science education, Darmstadt, Germany. DOI:10.1145/1999747.1999809
  • Bower, M., & Richards, D. (2005). The impact of virtual classroom laboratories in CSE. Paper presented at the Proceedings of the 36th SIGCSE technical symposium on Computer science education, St. Louis, Missouri, USA. DOI:10.1145/1047344.1047447As well, this Computers & Education paper specifically relates to a study of teaching computing online:
  • Bower, M., & Hedberg, J. G. (2010). A quantitative multimodal discourse analysis of teaching and learning in a web-conferencing environment–the efficacy of student-centred learning designs. Computers & education, 54(2), 462-478.

References

  1.  Falkner, Katrina; Sheard, Judy (2019). “Pedagogic Approaches”: 445–480. doi:10.1017/9781108654555.016. Chapter 15 of the The Cambridge Handbook of Computing Education Research
  2. Bower, Matt; Dalgarno, Barney; Kennedy, Gregor E.; Lee, Mark J.W.; Kenney, Jacqueline (2015). “Design and implementation factors in blended synchronous learning environments: Outcomes from a cross-case analysis”. Computers & Education86: 1–17. doi:10.1016/j.compedu.2015.03.006ISSN 0360-1315.

Join us to discuss blended learning, Monday 1st June at 11am on Zoom

Blended learning image via Giulia Forsythe

At our next journal club, on Monday 1st June at 11am, we’ll be discussing blended learning. We’ve picked a paper from “paper suggestions” channel at  uk-acm-sigsce.slack.com. The paper is Preparing for the Digital University, a review commissioned by the Gates Foundation.

We’ll be watching this short video intro to blended learning

If you’ve not got access to the workspace yet, ping me or Alcywn Parker and we’ll add you to the group. Journal Club is part of the Association for Computing Machinery (ACM) Special Interest Group (SIG) on Computer Science Education (CSE) – all welcome!