Join us to discuss learning sciences for computing education on Monday 12th April at 2pm BST

Scientist icon made by Eucalyp flaticon.com

Learning sciences aims to improve our theoretical understanding of how people learn while computing education investigates with how people learn to compute. Historically, these fields existed independently, although attempts have been made to merge them. Where do these disciplines overlap and how can they be integrated further? Join us to discuss learning sciences for computing education via a paper by Lauren Margulieux, Brian Dorn and Kristin Searle, from the abstract:

This chapter discusses potential and current overlaps between the learning sciences and computing education research in their origins, theory, and methodology. After an introduction to learning sciences, the chapter describes how both learning sciences and computing education research developed as distinct fields from cognitive science. Despite common roots and common goals, the authors argue that the two fields are less integrated than they should be and recommend theories and methodologies from the learning sciences that could be used more widely in computing education research. The chapter selects for discussion one general learning theory from each of cognition (constructivism), instructional design (cognitive apprenticeship), social and environmental features of learning environments (sociocultural theory), and motivation (expectancy-value theory). Then the chapter describes methodology for design-based research to apply and test learning theories in authentic learning environments. The chapter emphasizes the alignment between design-based research and current research practices in computing education. Finally, the chapter discusses the four stages of learning sciences projects. Examples from computing education research are given for each stage to illustrate the shared goals and methods of the two fields and to argue for more integration between them.

There’s a 5 minute summary of the chapter ten minutes into the video below:



All welcome. As usual, we’ll be meeting on zoom, see sigcse.cs.manchester.ac.uk/join-us for details. Thanks to this months paper suggestions from Sue Sentance and Nicola Looker.

References

  1. Margulieux, Lauren E.; Dorn, Brian; Searle, Kristin A. (2019). “Learning Sciences for Computing Education“: 208–230. doi:10.1017/9781108654555.009. in In S. A. Fincher & A. V. Robins (Eds.) The Cambridge Handbook of Computing Education Research. Cambridge, UK: Cambridge University Press

Join us to discuss why minimal guidance doesn’t work on Monday 2nd November at 2pm GMT

Minimal guidance is a popular approach to teaching and learning. This technique advocates teachers taking a back seat to facilitate learning by letting their students get on with it. Minimal guidance comes in many guises including constructivism, discovery learning, problem-based learning, experiential learning, active learning, inquiry-based learning and even lazy teaching. According to its critics, unguided and minimally guided approaches don’t work. Join us to discuss why via a paper [1] published by Paul Kirschner, John Sweller and Richard Clark, here is the abstract:

Evidence for the superiority of guided instruction is explained in the context of our knowledge of human cognitive architecture, expert–novice differences, and cognitive load. Although unguided or minimally guided instructional approaches are very popular and intuitively appealing, the point is made that these approaches ignore both the structures that constitute human cognitive architecture and evidence from empirical studies over the past half-century that consistently indicate that minimally guided instruction is less effective and less efficient than instructional approaches that place a strong emphasis on guidance of the student learning process. The advantage of guidance begins to recede only when learners have sufficiently high prior knowledge to provide “internal” guidance. Recent developments in instructional research and instructional design models that support guidance during instruction are briefly described.

This is a controversial, heavily cited and politically motivated paper which has provoked numerous rebuttals, making it an ideal candidate for a juicy journal club discussion! Thanks to Quintin Cutts for this months #paper-suggestions via our slack channel at uk-acm-sigsce.slack.com.

As usual, we’ll be meeting on zoom, see sigcse.cs.manchester.ac.uk/join-us for details and meeting URLs.

References

  1. Kirschner, Paul A.; Sweller, John; Clark, Richard E. (2006). “Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching”. Educational Psychologist. 41 (2): 75–86. DOI: 10.1207/s15326985ep4102_1 (see also altmetric.com/details/564640 for online attention scores)